Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yan Zheng, ${ }^{\text {a,b }}$ Jian-Rong Li, ${ }^{\text {a }}$ Ya-Bo Xie ${ }^{\text {a }}$ and Xian-He Bu ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Tianjin
University, Tianjin 300072, People's Republic of China

Correspondence e-mail: buxh@nankai.edu.cn

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in solvent or counterion
R factor $=0.070$
$w R$ factor $=0.180$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

2,4,6-Trimethyl-1,3,5-tris(2-pyrimidinylthiomethyl)benzene chloroform hemisolvate

The title compound, $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{~S}_{3} \cdot 0.5 \mathrm{CHCl}_{3}\left(\mathrm{TPSB} \cdot 0.5 \mathrm{CHCl}_{3}\right)$, crystallizes with one molecule of TPSB and half a solvent molecule of CHCl_{3} in the asymmetric unit. The three 2pyrimidinylthiomethyl groups attached to the central benzene ring adopt a cis,cis,cis conformation. The molecule of TPSB is analogous to a 'three-legged stool', and the dihedral angles between each of the three 'legs' (2-pyrimidinyl rings) and the central benzene ring are $87.0(5), 78.2$ (3) and $97.1(6)^{\circ}$, respectively, while the angles between the three 'legs' are 41.1 (3), 91.3 (5) and $49.5(7)^{\circ}$, respectively.

Comment

Hitherto, much progress has been achieved in crystal engineering and supramolecular chemistry, aimed at preparing new materials with novel optical, magnetic and electronic functions. A remarkable development in this area may be the possibility to select suitable building blocks and assemble them into structures with specific topologies and properties (Goodgame et al., 1993). Multi-thioether ligands possess unusual potential for structure control in crystal construction, and some interesting crystal structures of complexes with multi-thioether ligands (Bu et al., 2002; Alcock et al., 1978) have been reported. In addition, the ligand containing the pyrimidinyl group has also shown interesting coordination chemistry with transition metal ions (Su et al., 1999). However, only a few examples of these types of ligands have been structurally characterized (Gormley et al., 2000; Li et al., 2002). Here we report the synthesis and structure of a new flexible trithioether ligand, containing pyrimidinyl groups, 2,4,6-tri-methyl-1,3,5-tris(2-pyrimidinylthiomethyl)benzene (TPSB), (I). Further work on the reaction of the ligand with transition metal ions, such as Ag^{2+} and Pt^{2+}, is still in progress in our group.

(I)

As shown in Fig. 1, the three 2-pyrimidinylthio groups of TPSB have a cis,cis,cis conformation, which makes TPSB look like a 'three-legged stool'. The three 2-pyrimidinylthio groups

Received 2 April 2002 Accepted 16 July 2002 Online 25 July 2002

Figure 1
View of the title compound, with 30% probability displacement ellipsoids.
lie on the same side of the plane of the central benzene ring, three methyl groups (C7-C9) and three methene groups (C10, C 15 and C20). The plane formed by the three S atoms is almost parallel to the central benzene ring, with a dihedral angle of $2.2(8)^{\circ}$. The three dihedral angles between each pyrimidinyl group (viz. C11-C14/N1/N2, C16-C19/N3/N4 and C21-C24/N5/N6) and the central benzene ring are 87.0 (5), 78.2 (3) and $97.1(6)^{\circ}$, respectively, while the angles between the three pyrimidinyl planes are 41.1 (3), 91.3 (5) and 49.5 (7) ${ }^{\circ}$, respectively. The torsion angles $\mathrm{C} 15-\mathrm{S} 2-\mathrm{C} 16-\mathrm{N} 3$, $\mathrm{C} 10-\mathrm{S} 1-\mathrm{C} 11-\mathrm{N} 1$ and $\mathrm{C} 20-\mathrm{S} 3-\mathrm{C} 21-\mathrm{N} 5$ are $0,-7.6$ (6) and $12.2(3)^{\circ}$, respectively, which indicates that there may be conjugation between atom S 2 and the neighboring pyrimidinyl ring.

Experimental

1,3,5-Tris(bromethyl)-2,4,6-trimethylbenzene was prepared according to a reported method (van der Made \& van der Made, 1993), and sodium 2-pyrimidinylthiolate was obtained by the reaction of 2-mercaptopyrimidine with EtONa. 1,3,5-Tris(2-pyrimidinylthio-methyl)-2,4,6-trimethylbenzene was synthesized by the reaction of 1,3,5-tris(bromethyl)-2,4,6-trimethylbenzene and sodium 2-pyrimidinylthiolate in EtOH at 353 K (yield: 85%; mp: 468-469 K); IR (KBr): $1565(s), 1548(s), 1381(s), 1254(w), 1207(m), 1183(m)$, $798(w), 772(m), 749(m), 629(w) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.53(3 \mathrm{H}, s)$, $4.50(2 \mathrm{H}, s), 7.00(1 \mathrm{H}, t), 8.56(2 \mathrm{H}, d)$; analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{~S}_{3}$: C 58.51 , H 4.91, N 17.06%; found: C 58.42 , H $5.03, \mathrm{~N}$
17.13%. Colorless single crystals of (I) were obtained by recrystallization from chloroform.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{~S}_{3} \cdot 0.5 \mathrm{CHCl}_{3}$
$M_{r}=552.36$
Monoclinic, $P 2_{d} / c$
$a=18.957$ (6) А
$b=9.961$ (3) \AA
$c=16.335(5) \AA$
$\beta=110.885$ (6) ${ }^{\circ}$
$V=2881.9(16) \AA^{3}$
$Z=4$
$D_{x}=1.273 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10845
reflections
$\theta=2.4-24.7^{\circ}$
$\mu=0.42 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colorless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.884, T_{\text {max }}=0.921$
11025 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$
$w R\left(F^{2}\right)=0.180$
$S=0.93$
4853 reflections
334 parameters

> 4853 independent reflections 1832 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.098$
> $\theta_{\max }=25.0^{\circ}$
> $h=-22 \rightarrow 9$
> $k=-11 \rightarrow 11$
> $l=-19 \rightarrow 19$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.06 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.007$
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{\text {max }} \AA^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 29971019) and the Tianjin Natural Science Foundation.

References

Alcock, N. W., Herron, N. \& Moore, P. (1978). J. Chem. Soc. Dalton Trans. pp. 394-399.
Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X. H., Chen, W., Du, M., Kumar, B., Wang, W. Z. \& Zhang, R. H. (2002). Inorg. Chem. 41, 437-439.
Goodgame, D. M. L., Hill, S. P. W. \& Williams, S. J. (1993). J. Chem. Soc. Chem. Commun. pp. 1019-1021.
Gormley, F. K., Gronbach, J., Draper, S. M. \& Davis, A. P. (2000). J. Chem. Soc. Dalton Trans. pp. 173-179.
Li, J. R., Zheng, Y., Du, M., Xie, Y. B., Zhang, R. H. \& Bu, X. H. (2002). Acta Cryst. E58, o243-o244.
Made, A. W. van der \& van der Made, R. H. (1993). J. Org. Chem. 58, 12621263.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
$\mathrm{Su}, \mathrm{W} . \mathrm{P}^{\prime}, \mathrm{Cao}, \mathrm{R} .$, Hong, M. C., Wong, W. T. \& Lu, J. X. (1999). Inorg. Chem. Commun. 2, 241-243.

